Obliczenie: IcFpak - 1

log(a^n,x)  = 
 
 1
/ n
* log(a,x)
log(a^n,x) =  
 1
/ n
* log(a,x)
$$log_{a^n}(x)$$ = $$\frac{1}{n}\cdot log_{a}(x)$$
 
 1
/ n
* log(a,x)
 = log(a^n,x)$$\frac{1}{n}\cdot log_{a}(x)$$ = $$log_{a^n}(x)$$
 
 log(a,x)
/ n
 = log(a^n,x)$$\frac{log_{a}(x)}{n}$$ = $$log_{a^n}(x)$$
log(a,x) =  log(a^n,x)* n$$log_{a}(x)$$ = $$log_{a^n}(x)\cdot n$$
a = saknis(log(a^n,x)*n,x)$$a$$ = $$\sqrt[log(a^n,x)*n]{x}$$